ФЭНДОМ


TF-IDF (от англ. TF — term frequency, IDF — inverse document frequency ) — статистическая мера, используемая для оценки важности слова в контексте документа, являющегося частью коллекции документов или корпуса. Вес некоторого слова пропорционален количеству употребления этого слова в документе, и обратно пропорционален частоте употребления слова в других документах коллекции.

Мера TF-IDF часто используется в задачах анализа текстов и информационного поиска, например, как один из критериев релевантности документа поисковому запросу, при расчёте меры близости документов при кластеризации.

Структура формулы Править

TF (term frequency — частота слова) — отношение числа вхождения некоторого слова к общему количеству слов документа. Таким образом, оценивается важность слова  t_{i} в пределах отдельного документа.

 \mathrm{TF} = \frac{n_i}{\sum_k n_k} ,

где n_i есть число вхождений слова в документ, а в знаменателе — общее число слов в данном документе.

IDF (inverse document frequency — обратная частота документа) — инверсия частоты, с которой некоторое слово встречается в документах коллекции. Учёт IDF уменьшает вес широкоупотребительных слов.

 \mathrm{IDF} =  \log \frac{|D|}{|(d_{i}\supset t_{i})|} ,[1]

где

  • |D| — количество документов в корпусе;
  •  |(d_{i}\supset t_{i})| — количество документов, в которых встречается  t_{i} (когда  n_{i} \neq 0).

Таким образом, мера TF-IDF является произведением двух сомножителей: TF и IDF.

Большой вес в TF-IDF получат слова с высокой частотой в пределах конкретного документа и с низкой частотой употреблений в других документах.

Числовое применение Править

Существуют различные формулы, основанные на методе TF-IDF. Они отличаются коэффициентами, нормировками, использованием логарифмированных шкал. В частности, поисковая система Яндекс долгое время использовала нормировку по самому частотному термину в документе[1].

Одной из наиболее популярных формул является формула BM25[2].

Пример Править

Если документ содержит 100 слов и слово[2] «заяц» встречается в нём 3 раза, то частота слова (TF) для слова «заяц» в документе будет 0,03 (3/100). Одним из вариантов вычисления частоты документа (IDF) определяется как количество документов содержащих слово «заяц», разделенное на количество всех документов. Таким образом, если «заяц» содержится в 1000 документов из 10 000 000 документов, то частота документа (DF) будет равной 0,0001 (1000/10000000). Для расчета окончательного значения веса слова необходимо разделить TF на DF (или умножить на IDF). В данном примере, TF-IDF вес для слова «заяц» в коллекции документов будет 300 (0,03/0,0001).

Применение в модели векторного пространства Править

Мера TF-IDF часто используется для представлении документов коллекции в виде числовых векторов, отражающих важность использования каждого слова из некоторого набора слов (количество слов набора определяет размерность вектора) в каждом документе. Подобная модель называется векторной моделью (VSM) и даёт возможность сравнивать тексты, сравнивая представляющие их вектора в какой либо метрике (евклидово расстояние, косинусная мера, манхэттенское расстояние, расстояние Чебышева и др.), т. е. производя кластерный анализ.

ПримечанияПравить

  1. В некоторых вариантах формулы не используется логарифмирование.
  2. Обычно перед анализом документа слова приводятся морфологическим анализатором к нормальной форме.

Литература Править

См. такжеПравить

Ссылки Править

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики