ФЭНДОМ


<tr><th style="padding:3px">Класс языка:</th><td class="" style="padding:3px">

функциональный, объектно-ориентированный, императивный, аспектно-ориентированный </td></tr><tr><th style="padding:3px">Тип исполнения:</th><td class="" style="padding:3px"> интерпретация байт-кода, компиляция в MSIL, компиляция в байт-код Java </td></tr><tr><th style="padding:3px">Появился в:</th><td class="" style="padding:3px"> 1990 г. </td></tr><tr><th style="padding:3px">Автор(ы):</th><td class="" style="padding:3px"> Гвидо ван Россум </td></tr><tr><th style="padding:3px">Последняя версия:</th><td class="" style="padding:3px"> 3.1 </td></tr><tr><th style="padding:3px">Типизация данных:</th><td class="" style="padding:3px"> строгая, динамическая </td></tr><tr><th style="padding:3px">Основные реализации:</th><td class="" style="padding:3px"> CPython, Jython, IronPython, PyPy, Stackless </td></tr><tr><th style="padding:3px">Предки:</th><td class="" style="padding:3px"> ABC, Modula-3, Lisp, Smalltalk, C, Java, Icon </td></tr><tr><th style="padding:3px">Потомки:</th><td class="" style="padding:3px"> Ruby, Boo, Groovy, ECMAScript </td></tr>

</table>
Файл:PythonProgLogo.png

Python ([ˈpaɪθən]; па́йсон, па́йтон, пито́н) — высокоуровневый язык программирования общего назначения с акцентом на производительность разработчика и читаемость кода. Синтаксис ядра Питона минималистичен. В то же время стандартная библиотека включает большой объём полезных функций.

Python поддерживает несколько парадигм программирования, в том числе структурное, объектно-ориентированное, функциональное, императивное и аспектно-ориентированное. Основные архитектурные черты — динамическая типизация, автоматическое управление памятью, полная интроспекция, механизм обработки исключений, поддержка многопоточных вычислений и удобные высокоуровневые структуры данных. Код в Питоне организовывается в функции и классы, которые могут объединяться в модули (которые в свою очередь могут быть объединены в пакеты).

Эталонной реализацией Питона является интерпретатор CPython, поддерживающий большинство активно используемых платформ.[1] Он распространяется свободно под очень либеральной лицензией, позволяющей использовать его без ограничений в любых приложениях, включая проприетарные.[2] Есть реализации интерпретаторов для JVM (с возможностью компиляции), MSIL (с возможностью компиляции), LLVM и других. Проект PyPy предлагает реализацию Питона на самом Питоне, что уменьшает затраты на изменения языка и постановку экспериментов над новыми возможностями.

Python — активно развивающийся язык программирования, новые версии (с добавлением/изменением языковых свойств) выходят примерно раз в два с половиной года. Вследствие этого и некоторых других причин на Python отсутствуют ANSI, ISO или другие официальные стандарты, их роль выполняет CPython.

Философия Править

Разработчики языка Python придерживаются определённой философии программирования, называемой «Дзеном Питона»[3], и её текст выдаётся интерпретатором Питона по команде import this (работает один раз). Автором этой философии считается Тим Пейтерс.

Вольный перевод текста философии:

  • Красивое лучше уродливого.
  • Явное лучше неявного.
  • Простое лучше сложного.
  • Сложное лучше усложнённого.
  • Плоское лучше вложенного.
  • Разрежённое лучше плотного.
  • Удобочитаемость важна.
  • Частные случаи не настолько существенны, чтобы нарушать правила.
  • Однако практичность важнее чистоты.
  • Ошибки никогда не должны замалчиваться.
  • За исключением замалчивания, которое задано явно.
  • В случае неоднозначности сопротивляйтесь искушению угадать.
  • Должен существовать один — и, желательно, только один — очевидный способ сделать это.
  • Хотя он может быть с первого взгляда не очевиден, если ты не голландец.
  • Сейчас лучше, чем никогда.
  • Однако, никогда чаще лучше, чем прямо сейчас.
  • Если реализацию сложно объяснить — это плохая идея.
  • Если реализацию легко объяснить — это может быть хорошая идея.
  • Пространства имён — великолепная идея, их должно быть много!


История Править

Разработка языка Python была начата в конце 1980-х годов[4] сотрудником голландского института CWI Гвидо ван Россумом. Для распределённой ОС Amoeba требовался расширяемый скриптовый язык, и Гвидо начал писать Python на досуге, позаимствовав некоторые наработки для языка ABC (Гвидо участвовал в разработке этого языка, ориентированного на обучение программированию). В феврале 1991 года Гвидо опубликовал исходный текст в ньюсгруппе alt.sources[5]. С самого начала Python проектировался как объектно-ориентированный язык.

Файл:Python-icon.png

Название языка произошло вовсе не от вида пресмыкающихся. Автор назвал язык в честь популярного британского комедийного телешоу 1970-х «Воздушный цирк Монти Пайтона». Впрочем, всё равно название языка чаще ассоциируют именно со змеёй, нежели с фильмом — пиктограммы файлов в KDE или в Microsoft Windows и даже эмблема на сайте python.org изображает змеиные головы.

Наличие дружелюбного, отзывчивого сообщества пользователей считается наряду с дизайнерской интуицией Гвидо одним из факторов успеха Python. Развитие языка происходит согласно чётко регламентированному процессу создания, обсуждения, отбора и реализации документов PEP (Python Enhancement Proposal) — предложений по развитию Python.[6]

3 декабря 2008 года[7], после длительного тестирования, вышла первая версия Python 3000 (или Python 3.0, также используется сокращение Py3k). В Python 3000 устранены многие недостатки архитектуры с максимально возможным (но не полным) сохранением совместимости со старыми версиями Питона. На сегодня поддерживаются обе ветви развития (Python 3.0 и 2.x).

Влияние других языков на Python Править

Появившись сравнительно поздно, Python создавался под влиянием множества языков программирования:

  • ABC — отступы для группировки операторов, высокоуровневые структуры данных (map)[8][9] (фактически, Python создавался как попытка исправить ошибки, допущенные при проектировании ABC);
  • Modula-3 — пакеты, модули, использование else совместно с try и except, именованные аргументы функций (на это также повлиял Common Lisp);
  • Си, C++ — некоторые синтаксические конструкции (как пишет сам Гвидо ван Россум — он использовал наиболее непротиворечивые конструкции из С, чтобы не вызвать неприязнь у C программистов к Python[8]);
  • Smalltalk — объектно-ориентированное программирование;
  • Lisp — отдельные черты функционального программирования (lambda, map, reduce, filter и другие);
  • Fortran — срезы массивов, комплексная арифметика;
  • Miranda — списочные выражения;
  • Java — модули logging, unittest, threading (часть возможностей оригинального модуля не реализована), xml.sax стандартной библиотеки, совместное использование finally и except при обработке исключений, использование @ для декораторов;
  • Icon — генераторы.

Большая часть других возможностей Python (например, байт-компиляция исходного кода) также была реализована ранее в других языках.

Портируемость Править

Python портируем и работает почти на всех известных платформах — от КПК до мейнфреймов. Существуют порты под Microsoft Windows, все варианты UNIX (включая FreeBSD и GNU/Linux), Plan 9, Mac OS и Mac OS X, Palm OS, OS/2, Amiga, AS/400 и даже OS/390, Symbian и Android [10].

По мере устаревания платформы её поддержка в основной ветви языка прекращается. Например, с серии 2.6 прекращена поддержка Windows 95, Windows 98 и Windows ME.[11] Однако на этих платформах можно использовать предыдущие версии Python — на данный момент сообщество активно поддерживает версии Python начиная от 2.3 (для них выходят исправления).

При этом, в отличие от многих портируемых систем, для всех основных платформ Python имеет поддержку характерных для данной платформы технологий (например, Microsoft COM/DCOM). Более того, существует специальная версия Питона для виртуальной машины Java — Jython, что позволяет интерпретатору выполняться на любой системе, поддерживающей Java, при этом классы Java могут непосредственно использоваться из Питона и даже быть написанными на Питоне. Также несколько проектов обеспечивают интеграцию с платформой Microsoft .NET, основные из которых — IronPython и Python.Net.

Типы и структуры данных Править

Python поддерживает динамическую типизацию, то есть тип переменной определяется только во время исполнения. Поэтому вместо «присваивания значения переменной» лучше говорить о «связывании значения с некоторым именем». В Питоне имеются встроенные типы: булевые, строки, Unicode-строки, целые числа произвольной точности, числа с плавающей запятой, комплексные числа и некоторые другие. Из коллекций Python поддерживает кортежи (tuples), списки, словари (ассоциативные массивы) и, начиная с версии 2.4, множества. Все значения в Питоне являются объектами, в том числе функции, методы, модули, классы.

Добавить новый тип можно либо написав класс (class), либо определив новый тип в модуле расширения (например, написанном на языке C). Система классов поддерживает наследование (одиночное и множественное) и метапрограммирование. Возможно наследование от большинства встроенных типов и типов расширений.

Все объекты делятся на ссылочные и атомарные. К атомарным относятся int, long, complex и некоторые другие. При присваивании атомарных объектов копируется их значение, в то время как для ссылочных копируется только указатель на объект, таким образом обе переменные после присваивания используют одно и то же значение. Ссылочные объекты бывают изменяемые и неизменяемые. Например, строки и кортежи являются неизменяемыми, а списки, словари и многие другие объекты — изменяемыми. Кортеж в Питоне является, по сути, неизменяемым списком.

Синтаксис и семантика Править

Язык обладает чётким и последовательным синтаксисом, продуманной модульностью и масштабируемостью, благодаря чему исходный код написанных на Питоне программ легко читаем. См. также: en:Python syntax and semantics.

Операторы Править

Набор операторов достаточно традиционен. Вот некоторые из них:

  • условный оператор if (если). Альтернативный блок после else (иначе). Если условий и альтернатив несколько, можно использовать elif (сокр. от else if).
  • оператор цикла while (пока).
  • оператор цикла for (для). Внутри цикла возможно применение break и continue для прерывания цикла и перехода сразу к следующей итерации соответственно.
  • оператор определения класса class.
  • оператор определения функции, метода или генератора def. Внутри возможно применение return (возврат), а в случае генератора — yield (давать).
  • оператор обработки исключений try — except — else или try — finally (начиная с версии 2.5 можно использовать finally, except и else в одном блоке).
  • оператор pass ничего не делает. Используется для пустых блоков кода.

Одной из интересных синтаксических особенностей языка является выделение блоков кода с помощью отступов (пробелов или табуляций), поэтому в Питоне отсутствуют операторные скобки begin/end как в языке Паскаль или фигурные скобки, как в Си. Такой «трюк» позволяет сократить количество строк и символов в программе и приучает к «хорошему» стилю программирования. С другой стороны, поведение и даже корректность программы может зависеть от начальных пробелов в тексте. Некоторые критики языка считают такое поведение неинтуитивным и неудобным.

Выражения Править

Выражение является полноправным оператором в Питоне. Состав, синтаксис, ассоциативность и приоритет операций достаточно привычны для языков программирования и призваны минимизировать употребление скобок.

Отдельно стоит упомянуть операцию форматирования для строк (работает по аналогии с printf() из Си), которая использует тот же символ, что и взятие остатка от деления:

>>> print ("Здравствуй, %s!" % "Мир")
Здравствуй, Мир!

Python имеет удобные цепочечные сравнения. Такие условия в программах — не редкость:

1 <= a < 10 and 1 <= b < 20

Кроме того, логические операции (or и and) являются ленивыми: если для вычисления истинностного значения достаточно первого операнда, этот операнд и является результатом (в противном случае вычисляется второй операнд). Этот факт широко использовался до версии 2.5 вместо условной конструкции:

(a < b) and "меньше" or "больше"

Встроенные типы данных, как правило, имеют особый синтаксис для своих литералов (записанных в исходном коде констант):

"строка" + 'строка'  """тоже строка"""  u"Юникод-строка"
True or False            # булевы литералы
3.14                     # число с плавающей запятой
012 + 0xA                # числа в восьмеричной и шестнадцатеричной системах счисления
1 + 2j                   # целое число и мнимое число
[1, 2, "a"]              # список
(1, 2, "a")              # кортеж
{'a': 1, 'b': 'B'}       # словарь
lambda x: x**2           # неименованная функция

Для списков (и других последовательностей) Python предлагает набор операций над срезами. Особенностью является индексация, которая может показаться новичку странной, но раскрывает свою согласованность по мере использования. Индексы элементов списка начинаются с нуля. Запись среза s[N:M] означает, что в срез попадают все элементы от N включительно до M исключительно. В качестве иллюстрации можно посмотреть этот пример.

Имена Править

Имя (идентификатор) может начинаться с латинской буквы любого регистра или подчёркивания, после чего в имени можно использовать и цифры. В качестве имени нельзя использовать ключевые слова (их список можно узнать по import keyword; print keyword.kwlist) и нежелательно переопределять встроенные имена. Имена, начинающиеся на подчёркивание, имеют специальное значение.

В каждой точке программы интерпретатор имеет доступ к трём пространствам имён (то есть отображениям имён в объекты): локальному, глобальному и встроенному.

Области видимости имён могут быть вложенными друг в друга (внутри определяемой функции видны имена из окружающего блока кода). На практике с областями видимости и связыванием имён связано несколько правил «хорошего тона», о которых можно подробнее узнать из документации.

Строки документации Править

Python предлагает механизм документирования кода pydoc. В начало каждого модуля, класса, функции вставляется строка документации — docstring (англ.). Строки документации остаются в коде на момент времени исполнения и в язык встроен доступ к документации[12], что используется современными IDE.

В интерактивном режиме можно получить помощь, сгенерировать гипертекстовую документацию по целому модулю или даже применить doctest (англ.) для автоматического тестирования модуля.

Директивы Править

Начиная с Python 2.3, для использования в тексте программы символов, не входящих в ASCII, необходимо явно указывать кодировку исходного кода в начале модуля, например:

# -*- coding: utf-8 -*-

После этого можно, например, использовать кириллицу в Unicode-литералах.

Возможности Править

Интерактивный режим Править

Подобно Лиспу и Прологу в режиме отладки, интерпретатор Питона имеет интерактивный режим работы, при котором введённые с клавиатуры операторы сразу же выполняются, а результат выводится на экран. Этот режим интересен не только новичкам, но и опытным программистам, которые могут протестировать в интерактивном режиме любой участок кода, прежде чем использовать его в основной программе, или просто использовать как калькулятор с большим набором функций.

Так выглядит общение с Питоном в интерактивном режиме:

>>> 2 ** 100                           # возведение 2 в степень 100
1267650600228229401496703205376L
>>> from math import *                 # импорт математических функций
>>> sin(pi * 0.5)                      # вычисление синуса от половины пи 
1.0
>>> help(sorted)                       # помощь по функции sorted
Help on built-in function sorted in module __builtin__:
sorted(...)
   sorted(iterable, cmp=None, key=None, reverse=False) --> new sorted list

В интерактивном режиме доступен отладчик pdb и система помощи (вызывается по help()). Система помощи работает для модулей, классов и функций, только если те были снабжены строками документации.

Кроме встроенной, существует и улучшенная интерактивная оболочка IPython.[13]

Объектно-ориентированное программирование Править

Дизайн языка Python построен вокруг объектно-ориентированной модели программирования. Реализация ООП в Питоне является элегантной, мощной и хорошо продуманной, но вместе с тем достаточно специфической по сравнению с другими объектно-ориентированными языками.

Возможности и особенности:

  1. Классы являются одновременно объектами со всеми ниже приведёнными возможностями
  2. Наследование, в том числе множественное.
  3. Полиморфизм (все функции виртуальные).
  4. Инкапсуляция (два уровня — общедоступные и скрытые методы и поля).
  5. Специальные методы, управляющие жизненным циклом объекта: конструкторы, деструкторы, распределители памяти.
  6. Перегрузка операторов (всех, кроме is, '.', '=' и символьных логических).
  7. Свойства (имитация поля с помощью функций).
  8. Управление доступа к полям (эмуляция полей и методов, частичный доступ, и т. п.).
  9. Методы для управления наиболее распространёнными операциями (истинностное значение, len(), глубокое копирование, сериализация, итерация по объекту, …)
  10. Метапрограммирование (управление созданием классов, триггеры на создание классов, и др.)
  11. Полная интроспекция.
  12. Классовые и статические методы, классовые поля.
  13. Классы, вложенные в функции и классы.

Функциональное программирование Править

Python поддерживает парадигму функционального программирования, в частности:

  • функция является объектом
  • функции высших порядков
  • рекурсия
  • развитая обработка списков (списковые выражения, операции над последовательностями, итераторы)
  • аналог замыканий
  • частичное применение функции
  • возможность реализации других средств на самом языке (например, карринг)

Модули и пакеты Править

Программное обеспечение (приложение или библиотека) на Питоне оформляется в виде модулей, которые в свою очередь могут быть собраны в пакеты. Модули могут располагаться как в папках так и в ZIP архивах. Модули могут быть двух типов по своему происхождению: модули, написанные на «чистом» Питоне, и модули расширения (extension modules), написанные на других языках программирования. Например, в стандартной библиотеке есть «чистый» модуль pickle и его аналог на Си: cPickle. Модуль оформляется в виде отдельного файла, а пакет — в виде отдельного каталога. Подключение модуля к программе осуществляется оператором import. После импорта модуль представлен отдельным объектом, дающим доступ к пространству имён модуля. В ходе выполнения программы модуль можно перезагрузить функцией reload().

Интроспекция Править

Основная статья: Интроспекция в Питоне

Python поддерживает полную интроспекцию времени исполнения. Это означает, что для любого объекта можно получить всю информацию о его внутренней структуре.

Применение интроспекции является важной частью того, что называют pythonic style, и широко применяется в библиотеках Питона, таких как: PyRO, PLY, Cherry, Django и др., значительно экономя время использующего их программиста.

Обработка исключений Править

Обработка исключений поддерживается в Python посредством операторов try, except, else, finally, raise, образующих блок обработки исключения. В общем случае блок выглядит следующим образом:

try:
    #здесь код, который может вызвать исключение
    raise ExceptionType("message")
except (Тип исключения1, Тип исключения2,), Переменная:
    #Код в блоке выполняется, если тип исключения совпадает с одним из типов
    #(Тип исключения1, Тип исключения2, …) или является наследником одного
    #из этих типов.
    #Полученное исключение доступно в необязательной Переменной.
except (Тип исключения3, Тип исключения4,), Переменная:
    #количество блоков except не ограниченно
    raise #Сгенерировать исключение "поверх" полученного
except:
    #Будет выполнено при любом исключении, не обработанном типизированными блоками except
else:
    #Код блока выполняется, если не было поймано исключений.
finally:
    #будет исполненно в любом случае, возможно после соответствующего
    #блока except или else

Совместное использование else, except и finally стало возможно только начиная в Python 2.5. Информация о текущем исключении всегда доступна через sys.exc_info(). Кроме значения исключения Python также сохраняет состояние стека вплоть до точки возбуждения исключения — так называемый traceback.

В отличие от компилируемых языков программирования, в Python использование исключения не приводит к значительным накладным расходам (а зачастую даже позволяют ускорить исполнение программ) и очень широко используется. Исключения согласуются с философией Python (10-й пункт «Дзена» Python — «Ошибки никогда не должны умалчиваться») и являются одним из средств поддержки «утиной типизации».

Иногда вместо явной обработки исключений удобнее использовать блок with (доступен, начиная с Python 2.5).

Итераторы Править

В программах на Питоне широко используются итераторы. Цикл for может работать как с последовательностью, так и с итератором. Все коллекции, как правило, предоставляют итератор. Объекты определённого пользователем класса тоже могут быть итераторами. Подробнее об итераторах можно узнать в разделе о функциональном программировании. Модуль itertools стандартной библиотеки содержит много полезных функций для работы с итераторами.

Генераторы Править

Одной из интересных возможностей языка являются генераторы — функции, сохраняющие внутреннее состояние: значения локальных переменных и текущую инструкцию (см. также: сопрограммы). Генераторы могут использоваться как итераторы для структур данных и для ленивых вычислений. См. пример: генератор чисел Фибоначчи.

При вызове генератора функция немедленно возвращает объект-итератор, который хранит текущую точку исполнения и состояние локальных переменных функции. При запросе следующего значения (посредством метода next(), неявно вызываемого в for цикле) генератор продолжает исполнение функции от предыдущей точки останова до следующего оператора yield или return.

В Python 2.4 появились генераторные выражения — выражения, дающие в результате генератор. Генераторные выражения позволяют сэкономить память там, где иначе требовалось бы использовать список с промежуточными результатами:

>>> sum(i for i in xrange(1, 100) if i % 2 != 0)
2500

В этом примере суммируются все нечётные числа от 1 до 99.

Начиная с версии 2.5, Python поддерживает полноценные сопроцедуры: теперь в генератор можно передавать значения с помощью метода send() и возбуждать в его контексте исключения с помощью метода throw().

Управление контекстом выполнения Править

В Python 2.5 появились средства для управления контекстом выполнения блока кода — оператор with и модуль contextlib. См.: пример.

Оператор может применяться в тех случаях, когда до и после некоторых действий должны обязательно выполняться некоторые другие действия, независимо от возбуждённых в блоке исключений или операторов return: файлы должны быть закрыты, ресурсы освобождены, перенаправление стандартного ввода вывода закончено и т. п. Оператор улучшает читаемость кода, а значит, помогает предотвращать ошибки.

Декораторы Править

Начиная с версии 2.4 Python позволяет использовать т. н. декораторы[14] (не следует путать с одноимённым шаблоном проектирования) для поддержки существующей практики преобразования функций и методов в месте определения (декораторов может быть несколько). После долгих дебатов для декораторов стал использоваться символ @ в строках, предшествующих определению функции или метода. Следующий пример содержит описание статического метода без применения декоратора:

def myWonderfulMethod():
    return "Некоторый метод"
myWonderfulMethod = staticmethod(myWonderfulMethod)

и с помощью декоратора:

@staticmethod
def myWonderfulMethod():
    return "Некоторый метод"

Декоратор является ничем иным, как функцией, получающей в качестве первого аргумента декорируемую функцию или метод. Декораторы можно считать элементом аспектно-ориентированного программирования.

С версии 2.6 декораторы можно использовать с классами, аналогично функциям.

Другие возможности Править

В Python есть ещё несколько возможностей, отличающих его от многих других языков высокой гибкостью и динамичностью.

Например, класс является объектом, а в операторе определения класса можно использовать выражения в списке родительских классов.

def getClass():
    return dict
class D(getClass()):
    pass
d = D()

Можно модифицировать многие объекты во время исполнения, например классы:

>>> class X(object): pass>>> y = X()
>>> y.wrongMethod() # такого метода пока нет
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'X' object has no attribute 'wrongMethod'
>>> X.wrongMethod = lambda self : 'im here' # добавим его
>>> y.wrongMethod() # так как доступ к методу приводит к поиску по __dict__ класса,
'im here' # то wrongMethod становится доступным всем экземплярам

Библиотеки Править

Стандартная библиотека Править

Файл:Python batteries included.jpg

Богатая стандартная библиотека является одной из привлекательных сторон Питона. Здесь имеются средства для работы со многими сетевыми протоколами и форматами Интернета, например, модули для написания HTTP-серверов и клиентов, для разбора и создания почтовых сообщений, для работы с XML и т. п. Набор модулей для работы с операционной системой позволяет писать кросс-платформенные приложения. Существуют модули для работы с регулярными выражениями, текстовыми кодировками, мультимедийными форматами, криптографическими протоколами, архивами, сериализации данных, поддержка юнит-тестирования и др.

Модули расширения и программные интерфейсы Править

Помимо стандартной библиотеки существует множество библиотек, предоставляющих интерфейс ко всем системным вызовам на разных платформах; в частности, на платформе Win32 поддерживаются все вызовы Win32 API, а также COM в объёме не меньшем, чем у Visual Basic или Delphi. Количество прикладных библиотек для Python в самых разных областях без преувеличения огромно (веб, базы данных, обработка изображений, обработка текста, численные методы, приложения операционной системы и т. д.).

Для Python принята спецификация программного интерфейса к базам данным DB-API 2 и разработаны соответствующие этой спецификации пакеты для доступа к различным СУБД: PostgreSQL, Oracle, Sybase, Firebird (Interbase), Informix, Microsoft SQL Server, MySQL и sqlite. На платформе Microsoft Windows доступ к БД возможен через ADO (ADOdb). Коммерческий пакет mxODBC для доступа к СУБД через ODBC для платформ Windows и UNIX разработан eGenix.[15] Для Питона написано много ORM: SQLObject, SQLAlchemy, Dejavu, Django ORM и другие.

Библиотека NumPy[16] для работы с многомерными массивами позволяет достичь производительности научных расчётов, сравнимой со специализированными пакетами. SciPy использует NumPy и предоставляет доступ к обширному спектру математических алгоритмов (матричная алгебра — BLAS, level 1-3 и LAPACK; БПФ). Numarray[17] специально разработан для операций с большими объёмами научных данных.

На стадии разработки[18] находится WSGI — интерфейс шлюза с веб-сервером (Python Web Server Gateway Interface).

Python предоставляет простой и удобный программный интерфейс C API для написания собственных модулей на языках Си и Си++. Такой инструмент как SWIG позволяет почти автоматически получать привязки для использования C/C++ библиотек в коде на Питоне. Возможности этого и других инструментов варьируются от автоматической генерации (C/C++/Fortran)-Python интерфейсов по специальным файлам (SWIG, pyste[19], SIP[20], pyfort[21]), до предоставления более удобных API (boost::python[22], CXX[23] и др.). Инструмент стандартной библиотеки ctypes позволяет программам Питона напрямую обращаться к динамическим библиотекам/DLL, написанным на C. Существуют модули, позволяющие встраивать код на С/C++ прямо в исходные файлы Python, создавая расширения «на лету» (pyinline[24], weave[25]).

Другой подход состоит во встраивании интерпретатора Python в приложения. Python легко встраивается в программы на Java, C/C++, Ocaml. Взаимодействие Python-приложений с другими системами возможно также с помощью CORBA, XML-RPC, SOAP, COM.

С помощью Pyrex[26] возможна компиляция Python-подобного (добавлена возможность типизации) языка кода в эквивалентный С код и связывание с внешними модулями.

Экспериментальный проект shed skin[27][28] предполагает создание компилятора для трансформации неявно типизированных Python программ в оптимизированный С++ код. Начиная с версии 0.22 shed skin позволяет компилировать отдельные функции в модули расширений. Полная компиляция (по состоянию на 1 июля 2007 года) далека от завершения.

Python и подавляющее большинство библиотек к нему бесплатны и поставляются в исходных кодах. Более того, в отличие от многих открытых систем, лицензия никак не ограничивает использование Python в коммерческих разработках и не налагает никаких обязательств кроме указания авторских прав.

Графические библиотеки Править

С Питоном поставляется библиотека tkinter на основе Tcl/Tk для создания кроссплатформенных программ с графическим интерфейсом.

Существуют расширения, позволяющие использовать все основные GUI библиотеки — wxPython[29], основанное на библиотеке wxWidgets, PyGTK для Gtk, PyQt для Qt и другие. Некоторые из них, например, PyQt, также предоставляют широкие возможности по работе с базами данных, графикой и сетями, используя все возможности библиотеки, на которой основаны.

Для создания игр и приложений, требующих нестандартного интерфейса, можно использовать библиотеку Pygame. Она также предоставляет обширные средства работы с мультимедиа: с её помощью можно управлять звуком и изображениями, воспроизводить видео. Предоставляемое pygame аппаратное ускорение графики OpenGL имеет более высокоуровневый интерфейс по сравнению с PyOpenGL[30], копирующей семантику С-библиотеки для OpenGL. Есть также PyOgre[31], обеспечивающая привязку к Ogre — высокоуровневой объектно-ориентированной библиотеке 3D-графики. Кроме того, существует библиотека pythonOCC[32] обеспечивающая привязку к среде 3D-моделирования и симуляции OpenCascade[33].

Для работы с растровой графикой используется библиотека Python Imaging Library.

Примеры программ Править

В статье «Примеры программ на языке Python» собраны примеры небольших программ, демонстрирующих некоторые возможности языка Python и его стандартной библиотеки.

Профилирование и оптимизация кода Править

В стандартной библиотеке Python имеется профайлер (модуль profile), который можно использовать для сбора статистики о времени работы отдельных функций. Для решения вопроса о том, какой вариант кода работает быстрее, можно использовать модуль timeit. Производимые в следующей программе измерения позволяют выяснить, какой из вариантов конкатенации строк более эффективен:

from timeit import Timer
def case1():  # А. инкрементальные конкатенации в цикле
    s = ""
    for i in range(10000):
        s += str(i)
 
def case2():  # Б. через промежуточный список и метод join
    s = []
    for i in range(10000):
        s.append(str(i))
    s = "".join(s)
 
def case3():  # В. списковое выражение и метод join
    return "".join([str(i) for i in range(10000)])
 
def case4():  # Г. генераторное выражение и метод join
    return "".join(str(i) for i in range(10000))
 
for v in range(1,5):
    print (Timer("func()","from __main__ import case%s as func" % v).timeit(200))

Как и в любом языке программирования, в Питоне имеются свои приемы оптимизации кода. Оптимизировать код можно исходя из различных (часто конкурирующих друг с другом) критериев (увеличение быстродействия, уменьшение объёма требуемой оперативной памяти, компактность исходного кода и т. д.). Чаще всего программы оптимизируют по времени исполнения.

Здесь есть несколько очевидных правил:

  • Не нужно оптимизировать программу, если скорость её выполнения достаточна.
  • Используемый алгоритм имеет определённую временную сложность, поэтому перед оптимизацией кода программы стоит сначала пересмотреть алгоритм.
  • Стоит использовать готовые и отлаженные функции и модули, даже если для этого нужно немного обработать данные. Например, в Питоне есть встроенная функция sort().
  • Профилирование поможет выяснить узкие места. Оптимизацию нужно начинать с них.

Python имеет следующие особенности и связанные с ними правила оптимизации:

  • Вызов функций является достаточно дорогостоящей операцией, поэтому внутри вложенных циклов нужно стараться избегать вызова функций или, например, переносить цикл в функции. Функция, обрабатывающая последовательность, эффективнее, чем обработка той же последовательности в цикле вызовом функции.
  • Старайтесь вынести из глубоко вложенного цикла всё, что можно вычислить во внешних циклах. Доступ к локальным переменным более быстрый, чем к глобальным, или чем доступ к полям.
  • Оптимизатор psyco может помочь ускорить работу модуля программы при условии, что модуль не использует динамических свойств языка Питон.
  • В случае, если модуль проводит массированную обработку данных и оптимизация алгоритма и кода не помогает, можно переписать критические участки, скажем, на языке Си или Pyrex.

Инструмент под названием Pychecker[34] поможет проанализировать исходный код на Питоне и выдать рекомендации по найденным проблемам (например, неиспользуемые имена, изменение сигнатуры метода при его перегрузке и т. п.). В ходе такого статического анализа исходного кода могут быть выявлены и ошибки. Pylint[35] призван решать близкие задачи но имеет уклон в сторону проверки стиля кода.

Сравнение с другими языками Править

Наиболее часто Python сравнивают с Perl и Ruby. Эти языки также являются интерпретируемыми и обладают примерно одинаковой скоростью выполнения программ. Как и Perl, Python может успешно применяться для написания скриптов (сценариев). Как и Ruby, Python является хорошо продуманной системой для ООП.

Средства функционального программирования частично позаимствованы из Scheme и Icon.

В среде коммерческих приложений скорость выполнения программ на Python часто сравнивают с Java-приложениями.[36]

Несмотря на то, что Python обладает достаточно самобытным синтаксисом, одним из принципов дизайна этого языка является принцип наименьшего удивления.

Недостатки Править

См. также списки недостатков языка Python.[37]

Низкое быстродействие Править

Питон, как и многие другие интерпретируемые языки, не применяющие, например, JIT-компиляторы, имеют общий недостаток — сравнительно невысокую скорость выполнения программ.[38] Однако, в случае с Python этот недостаток компенсируется уменьшением времени разработки программы.[38] В среднем, программа, написанная на Python, в 2-4 раза компактнее, чем её аналог на C++ или Java.[38] Сохранение байт-кода (файлы .pyc и .pyo) позволяет интерпретатору не тратить лишнее время на перекомпиляцию кода модулей при каждом запуске, в отличие, например, от языка Perl. Кроме того, существует специальная JIT-библиотека psyco[39], позволяющая ускорить выполнение программ (однако приводящая к увеличению потребления оперативной памяти). Эффективность psyco сильно зависит от архитектуры программы.

Существуют проекты реализаций языка Python, вводящие высокопроизводительные виртуальные машины (ВМ) в качестве компилятора заднего плана. Примерами таких реализаций может служить PyPy, базирующийся на LLVM; более ранней инициативой является проект Parrot. Ожидается, что использование ВМ типа LLVM приведёт к тем же результатам, что и использование аналогичных подходов для реализаций языка Java, где низкая вычислительная производительность в основном преодолена.[40]

Множество программ/библиотек для интеграции с другими языками программирования (см. выше) предоставляют возможность использовать другой язык для написания критических участков.

В самой популярной реализации языка Python интерпретатор довольно велик и более требователен к ресурсам, чем в аналогичных популярных реализациях Tcl, Forth, LISP или Lua, что ограничивает его применение во встроенных системах. Тем не менее, Python нашёл применение в КПК и некоторых моделях мобильных телефонов.[41]

Отсутствие статической типизации Править

Отсутствие статической типизации является не столько недостатком интерпретатора, сколько выбором дизайнера языка. Дело в том, что в Python принята так называемая «Утиная типизация». В силу этого типы передаваемых значений недоступны на этапе компиляции, и ошибки вроде AttributeError могут возникать во время исполнения. Отсутствие статической типизации также является одной из основных причин низкого быстродействия.

Существуют модули, которые позволяют контролировать типы параметров функций на этапе исполнения, например typecheck[42] или method signature checking decorators[43]. Добавление необязательной статической типизации параметров функции запланированно для Python3000.[44][45] При этом, однако, непосредственно интерпретатор не будет проверять типы, а только добавлять соответствующую информацию к метаданным функции для её (информации) последующего использования модулями расширений.

Отсутствие статической типизации и некоторые другие причины не позволяют реализовать в Python механизм перегрузки функций на этапе компиляции. Возможности Python позволяют реализовать динамическую перегрузку на этапе исполнения, что, конечно, замедляет вызов, так как разрешение производится при каждом обращении и является, в общем случае, довольно сложной процедурой. Отсутствие перегрузки в Python стараются компенсировать использованием виртуальных функций.

 len = lambda x : x.__len__()  # это только пример

Реализации и описание[46][47], пример реализации простой перегрузки также есть в примерах программ на Python.

Планы по поддержке перегрузки в Python3000.[44][48] Перегрузка функций реализована различными сторонними библиотеками, в том числе PEAK[49][50] предоставляет чрезвычайно богатый возможностями механизм перегрузки функций с использованием произвольных правил.

Невозможность модификации встроенных классов Править

По сравнению с Ruby и некоторыми другими языками, в Python отсутствует возможность модифицировать встроенные классы, такие, как int, str, float, list и другие, что, однако, позволяет Python потреблять меньше оперативной памяти и быстрее работать. Ещё одной причиной введения такого ограничения является необходимость согласования с модулями расширения. Многие модули (в целях оптимизации быстродействия) преобразуют Python-объекты элементарных типов к соответствующим C типам вместо манипуляций с ними посредством C API.

Глобальная блокировка интерпретатора (GIL) Править

GIL (Global Interpreter Lock) — проблема, присущая CPython, Stackless и PyPy, но отсутствующая в Jython и IronPython. При своей работе основной интерпретатор Python постоянно использует большое количество потоково-небезопасных данных. В основном это словари, в которых хранятся атрибуты объектов. Для избежания разрушения этих данных при совместной модификации из разных потоков перед началом исполнения нескольких инструкций (по умолчанию 100) поток интерпретатора захватывает GIL, а по окончании освобождает. Вследствие этой особенности в каждый момент времени может исполняться только один поток Python кода, даже если в компьютере имеется несколько процессоров или процессорных ядер (GIL также освобождается на время выполнения блокирующих операций, таких как ввод-вывод, изменения/проверка состояния синхронизирующих примитивов и других — таким образом, если один поток блокируется, другие могут исполняться). Была предпринята попытка перехода к более гранулированным синхронизациям, однако из-за частых захватов/освобождений блокировок эта реализация оказалась слишком медленной.[51] В ближайшем будущем переход от GIL к другим техникам не предполагается, однако есть python-safethread[52] — CPython без GIL и с некоторыми другими изменениями (по утверждениям его авторов на однопоточных приложениях скорость соответствует 60-65 % от скорости оригинального CPython).

Эта проблема имеет два основных варианта решения. Первый — отказ от совместного использования изменяемых данных. При этом данные дублируются в потоках и необходимость обеспечения их синхронизации (если таковая нужна) лежит на программисте.[53] Этот подход ведёт к увеличению потребления оперативной памяти (однако не настолько сильно, как при использовании процессов).

Второй подход — обеспечение более гранулированной синхронизации — для отдельных структур данных. В этом случае падает производительность вследствие увеличения числа освобождений/захватов блокировок.

Если необходимо параллельное исполнение нескольких потоков Python кода, то можно воспользоваться процессами, например, модулем processing[54], который имитирует семантику стандартного модуля threading, но использует процессы вместо потоков. Есть множество модулей, упрощающих написание параллельных и/или распределённых приложений на Python, таких как parallelpython[55], Pypar[56], pympi[57] и других. GIL освобождается при исполнении кода большинства расширений, например numpy/scipy, позволяя на время расчётов исполняться другому Python потоку. Другим решением может быть использование IronPython или Jython, лишённых данного недостатка.

Реализации Править

CPython является основной, но не единственной реализацией языка программирования Python. Существуют также следующие реализации:

Jython — реализация Python, использующая JVM в качестве среды исполнения. Позволяет прозрачно использовать Java библиотеки.[58]

PyS60[41] — реализация Питона для (некоторых) смартфонов фирмы Nokia.

IronPython — Python для Microsoft .NET и Mono. Компилирует Python программы в MSIL, таким образом предоставляя полную интеграцию с .NET системой.[59]

Stackless[60] — также написанная на С реализация Python. Это не полноценная реализация, а патчи к CPython. Предоставляет расширенные возможности многопоточного программирования и значительно большую глубину рекурсии.

Python for .NET[61] — ещё одна реализация Python для .NET. В отличии от IronPython эта реализация не компилирует Python код в MSIL, а только предоставляет интерпретатор, написанный на C#. Позволяет использовать .NET сборки из Python кода.

PyPy[62] — реализация Python, написанная на Python. Позволяет легко проверять новые возможности. В PyPy кроме стандартного CPython включены возможности Stackless (англ.), Psyco (англ.), модификация АСТ «на лету» и многое другое. В проект интегрированы возможности анализа Python кода и трансляция в другие языки и байтокоды виртуальных машин (C, LLVM, Javascript, .NET с версии 0.9.9). Начиная с 0.9.0, возможна полностью автоматическая трансляция интерпретатора на C, в результате чего достигается скорость, приемлемая для использования (в 2—3 раза медленнее чем CPython при отключённом JIT для версии 0.9.9). JIT находится в активной доработке.

python-safethread[52] — версия CPython без GIL, что позволяет одновременно исполнять Python потоки на всех доступных процессорах. Внесены также некоторые другие изменения.

Unladen Swallow[40] — начатый Google проект по разработке высокоэффективного, максимально совместимого с CPython JIT-компилятора на базе LLVM.

tinypy[63] — минималистическая версия Python. Часть возможностей CPython не реализована.

Дальнейшая разработка Править

Python Enhancement Proposal («PEP») — это документ со стандартизированным дизайном, предоставляющий общую информацию о языке Python, включая новые предложения, описания и разъяснения возможностей языка. PEP предлагаются как основной источник для предложения новых возможностей и для разъяснения выбора того или иного дизайна для всех основных элементов языка. Выдающиеся PEP рецензируются и комментируются BDFL.

График и совместимость Править

Серии Python 2.x и Python 3.x в течение нескольких выпусков будут существовать параллельно, при этом серия 2.x будет использоваться для совместимости и скорее всего в неё будут включены некоторые возможности серии 3.x. PEP 3000 содержит больше информации о планируемых выпусках.

Python 3.0 обратно не совместим с предыдущей серией 2.x. Код Python 2.x скорее всего будет выдавать ошибки при исполнении в Python 3.0. Динамическая типизация Python вместе с планами изменения нескольких методов словарей делает механический перевод из Python 2.x в Python 3.0 очень сложным. Однако, утилита «2to3» уже способна сделать большинство работы по переводу кода, указывая на подозрительные ей части с помощью комментариев и предупреждений. PEP 3000 рекомендует держать исходный код для серии 2.x, и делать выпуски для Python 3.x с помощью «2to3». Полученный код не следует редактировать, пока программа должна быть работоспособной в Python 2.x.

Возможности Править

Основные изменения, внесённые в версии 3.0:[64][65]

  • Синтаксическая возможность для аннотации параметров и результата функций (например, для передачи информации о типе или документирования).
  • Полный переход на unicode для строк.
  • Введение нового типа «неизменяемые байты» и типа «изменяемый буфер». Оба необходимы для представления бинарных данных.
  • Новая подсистема ввода-вывода (модуль io), имеющая отдельные представления для бинарных и текстовых данных.
  • Абстрактные классы, абстрактные методы (доступно уже в 2.6).
  • Иерархия типов для чисел.
  • Выражения для словарей и множеств {k: v for k, v in a_dict} и {el1, el2, el3} (по аналогии со списковыми выражениями).
  • Изменения print из встроенного выражения во встроенную функцию. Это позволит модулям делать изменения, подстраиваясь под разное использование функции, а также упростит код. В Python 2.6 эта возможность активируется вводом from __future__ import print_function.
  • Перемещение reduce (но не map или filter) из встроенного пространства в модуль functools (использование reduce существенно менее читаемо по сравнению с циклом).
  • Удаление некоторых устаревших возможностей, поддерживаемых в ветке 2.x для совместимости, в частности: классы старого стиля, целочисленное деление с обрезанием результата как поведение по умолчанию, строковые исключения, неявный относительный импорт, оператор exec и т. п.
  • Реорганизация стандартной библиотеки.
  • Новый синтаксис для метаклассов.
  • Изменен синтаксис присваиваний. Стало возможным, например, присваивание (a, *rest, b) = range(5). С другой стороны, формальные параметры функций вроде def foo(a, (b, c)) более недопустимы.

Специализированные подмножества/расширения Python Править

На основе Python было создано несколько специализированных подмножеств языка, в основном предназначенных для статической компиляции в машинный код. Некоторые из них:

RPython[66] — созданная в рамках проекта PyPy сильно ограниченная реализация Python без динамизма времени исполнения и некоторых других возможностей. RPython код можно компилировать во множество других языков/платформ — C, JavaScript, Lisp, .NET[67], LLVM. На RPython написан интерпретатор PyPy.

Pyrex[26] — ограниченная реализация Python, но несколько меньше, чем RPython. PyReX расширен возможностями статической типизации типами из языка С и позволяет свободно смешивать типизированный и не типизированный код. Предназначен для написания модулей расширений, компилируется в код на языке С.

Cython[68] — расширенная версия Pyrex.

pyastra[69] — компилятор Python кода в ассемблер для PIC архитектуры.

Проект shed-skin[28] — предназначен для компиляции неявно статически типизированного Python кода в оптимизированный код на языке С++, проект далёк от завершения.

Применение Править

Основная статья: Использование Python

Python — стабильный и распространённый язык. Он используется во многих проектах и в различных качествах: как основной язык программирования или для создания расширений и интеграции приложений. На Python реализовано большое количество проектов, также он активно используется для создания прототипов будущих программ.

Python используется во многих крупных компаниях.[70]

Примечания Править

  1. http://www.python.org/about/
  2. http://www.python.org/2.5/license.html
  3. http://www.python.org/peps/pep-0020.html
  4. http://www.artima.com/intv/pythonP.html
  5. http://svn.python.org/view/*checkout*/python/trunk/Misc/HISTORY
  6. http://www.python.org/dev/peps/
  7. http://python.org/download/releases/3.0/
  8. 8,0 8,1 http://www.python.org/doc/essays/foreword/
  9. http://www.artima.com/intv/python2.html
  10. Python on Android (англ.). www.damonkohler.com. Проверено 19 декабря 2009.
  11. Port-Specific Changes: Windows (англ.). Python v2.6.1 documentation. What’s New in Python 2.6. Python Software Foundation. Проверено 11 декабря 2008.
  12. …целостность больших проектов на Python строится на двух вещах: тесты и doc-строка
  13. http://ipython.scipy.org/
  14. PEP318
  15. http://egenix.com/
  16. http://numpy.scipy.org
  17. http://www.stsci.edu/resources/software_hardware/numarray
  18. PEP333
  19. http://www.boost.org/libs/python/pyste/index.html
  20. http://www.riverbankcomputing.co.uk/sip/
  21. http://pyfortran.sourceforge.net/
  22. http://www.boost.org/libs/python/doc/
  23. http://cxx.sourceforge.net/
  24. http://pyinline.sourceforge.net/
  25. http://www.scipy.org/Weave
  26. 26,0 26,1 http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
  27. http://sourceforge.net/projects/shedskin
  28. 28,0 28,1 http://shed-skin.blogspot.com/
  29. http://www.wxpython.org/
  30. http://pyopengl.sourceforge.net/
  31. http://www.ogre3d.org/wiki/index.php/PyOgre
  32. http://www.pythonocc.org/
  33. http://www.opencascade.org/
  34. http://pychecker.sourceforge.net/
  35. http://www.logilab.org/view?rql=Any%20X%20WHERE%20X%20eid%20857
  36. Результаты одной из попыток сравнения
  37. http://zephyrfalcon.org/labs/python_pitfalls.html
  38. 38,0 38,1 38,2 Python / C++ GNU g++. Computer Language Benchmarks Game.  ???. Проверено 1 июля 2009.
  39. Psyco(англ.)  — JIT-компилятор для Python, позволяющий увеличить скорость работы программ в 3-10 раз
  40. 40,0 40,1 unladen-swallow. A faster implementation of Python. code.google. — «Goals: … Produce a version of Python at least 5x faster than CPython»  Проверено 22 июня 2009.
  41. 41,0 41,1 http://wiki.opensource.nokia.com/projects/PyS60
  42. http://oakwinter.com/code/typecheck/
  43. http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/426123
  44. 44,0 44,1 PEP-3107
  45. PEP-3100
  46. http://alpha.sec.ru/~aiv/python/overload/
  47. http://python.com.ua/doc/overload.html
  48. PEP-3124
  49. http://peak.telecommunity.com/DevCenter/FrontPage
  50. PEAK-Rules
  51. http://www.artima.com/weblogs/viewpost.jsp?thread=211200
  52. 52,0 52,1 http://code.google.com/p/python-safethread/
  53. http://perldoc.perl.org/perlthrtut.html
  54. http://pypi.python.org/pypi/processing
  55. http://www.parallelpython.com/
  56. http://datamining.anu.edu.au/~ole/pypar/
  57. http://pympi.sourceforge.net/
  58. http://www.jython.org/
  59. http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython
  60. http://www.stackless.com/
  61. http://pythonnet.sourceforge.net/
  62. http://codespeak.net/pypy
  63. http://www.tinypy.org/
  64. http://docs.python.org/dev/3.0/whatsnew/3.0.html
  65. http://docs.python.org/3.0/index.html
  66. http://codespeak.net/pypy/dist/pypy/doc/coding-guide.html#restricted-python
  67. http://codespeak.net/pypy/dist/pypy/doc/carbonpython.html
  68. http://www.cython.org/
  69. http://pyastra.sourceforge.net
  70. http://www.python.org/about/success/usa


См. также Править

Ссылки Править

Python
</span>


Информация по различным аспектам языка Править




 — Коллекция решённых на Питоне задач (удобна для сравнения с другими языками)

 — Быстрое знакомство с Питоном 2.5






Расширения и библиотеки для Python Править


, The Python Cheese Shop(англ.)

 — хранилища модулей и готовых программ

 — набор библиотек для научных приложений

 — набор библиотек для работы с XML

 — Библиотека для написания игровых приложений на языке Python

 — дистрибутив CPython + набор дополнительных модулей

  • py2exe - компилятор Python скриптов для windows

Литература Править

На русском языке
  • Бизли, Дэвид М. Язык программирования Python. Справочник. — К.: ДиаСофт, 2000. — 336 с. — ISBN 966-7393-54-2, ISBN 0-7357-0901-7
  • Газетдинов Альберт. Серия статей Python на Symbian S60: mobi.ru и devmobile.ru
  • Лейнингем ван Иван. Освой самостоятельно Python за 24 часа = Teach Yourself Python in 24 Hours. — М.: «Вильямс», 2001. — С. 448. — ISBN 0-672-31735-4
  • Лутц, Марк. Программирование на Python: Перевод с английского (+CD). — СПб.: Символ-Плюс, 2002. — 1136 с — ISBN 5-93286-036-7, ISBN 0-596-00085-5
  • Пилгрим М. Вглубь языка Python
  • Россум ван Г., Дрейк Ф. Л. Дж., Откидач Д. С. и др. Язык программирования Python. — СПб.: АНО «Институт логики». Невский Диалект, 2001 (не издано, черновик)
  • Спикльмайр С. и др. Zope. Разработка Web-приложений и управление контентом. — М.: ДМК., 2003. — 464 с. — ISBN 5-94074-189-4, ISBN 0-7357-1110-0
  • Сузи, Р. А. Python. Наиболее полное руководство (+CD). — СПб.: БХВ-Петербург, 2002. — 768 с. — ISBN 5-94157-097-X
  • Сузи Р. А. Язык программирования Python: Учебное пособие. — М.: ИНТУИТ, БИНОМ. Лаборатория знаний, 2006. — 328 с. — ISBN 5-9556-0058-2, ISBN 5-94774-442-2
  • Чаплыгин А. Н. и др. Учимся программировать вместе с Питоном. (в процессе написания).
На английском языке
  • David Beazley, Guido Van Rossum. Python: Essential Reference. New Riders Publishing, 1999
  • Martin C. Brown. Python: The Complete Reference. McGraw-Hill Professional Publishing, 2001
  • Wesley J. Chun. Core Python Programming. Prentice Hall PTR, 2000
  • Alan Gauld. Learn to Program Using Python: A Tutorial for Hobbyists, Self-Starters, and Those Who Want to Learn the Art of Programming. Addison-Wesley Professional, 2001
  • John E. Grayson. Python and Tkinter Programming. Manning Publications Company, 1999
  • Rashi Gupta. Making use of Python. Wiley, 2002
  • Mark Hammond, Andy Robinson. Python Programming on Win32. O’Reilly, 2000
  • Christopher A. Jones, Fred L. Drake. Python & XML. O’Reilly & Associates, 2001
  • Ivan Van Laningham. Teach Yourself Python in 24 Hours. Sams, 2000
  • Amos Latteier, Michel Pelletier. The Zope Book. New Riders Publishing, 2001
  • Frederik Lundh. Python Standard Library. O’Reilly & Associates, 2001
  • Mark Lutz, David Ascher. Learning Python. O’Reilly, 1999
  • Mark Lutz. Programming Python (2nd Edition). O’Reilly & Associates, 2001
  • Albert Sweigart. Invent Your Own Computer Games with Python. CC license

Шаблон:FOSS

<span id="interwiki-de-ga" />


<span id="interwiki-en-ga" />

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.