ФЭНДОМ


Эргодичность — специальное свойство некоторых изменяющихся (динамических) систем, состоящее в том, что в процессе эволюции эргодичной системы почти каждая точка её с определённой правильностью проходит вблизи любой другой точки системы. Тогда при расчетах труднорассчитываемое время можно заменить фазовыми (пространственными) показателями. Система, в которой фазовые средние совпадают с временными, называется эргодической.

Преимущество эргодических динамических систем в том, что при достаточном времени наблюдения такие системы можно описывать статистическими методами. Например, температура газа — это мера средней энергии молекулы, рыночная цена компании — это мера производных функций от данных бухгалтерской отчетности. Естественно, предварительно необходимо доказать эргодичность данной системы.

Для эргодических систем математическое ожидание по временным рядам должно совпадать с математическим ожиданием по пространственным рядам.

Эргодическая теория — один из разделов общей динамики.

Эргодическая цепь Маркова Править


Примеры Править

См. также Править

Литература Править

  • Хинчин А. Я., Математические основания статистической механики, М. — Л., 1943;
  • Немыцкий В. В., Степанов В. В., Качественная теория дифференциальных уравнений, 2 изд., М. — Л., 1949;
  • Халмош П., Лекции по эргодической теории, пер. с англ., М., 1959;
  • Аносов Д. В., Синай Я. Г., Некоторые гладкие эргодические системы, «Успехи математических наук», 1967, т. 22, в. 5 (137).
  • И. П. Корнфельд, Я. Г. Синай, С. В. Фомин. Эргодическая теория. М.: Наука, 1980.
  • G. D. Birkhoff, Proof of the ergodic theorem, (1931), Proc Natl Acad Sci U S A, 17 pp 656—660.
  • J. von Neumann, Proof of the Quasi-ergodic Hypothesis, (1932), Proc Natl Acad Sci U S A, 18 pp 70-82.
  • J. von Neumann, Physical Applications of the Ergodic Hypothesis, (1932), Proc Natl Acad Sci U S A, 18 pp 263—266.
  • U. Krengel. Ergodic Theorems. Berlin — New York: W. de Gruyter, 1985.

Ссылки Править




Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики