ФЭНДОМ


Файл:Butterworth filter bode plot ru.png

Логарифмическая амплитудно-фазовая частотная характеристика (ЛАФЧХ) — представление частотного отклика линейной стационарной системы в логарифмическом масштабе.

ЛАФЧХ строится в виде двух графиков: логарифмической амплитудно-частотной характеристики и фазо-частотной характеристики, которые обычно располагаются друг под другом.

Анализ систем с помощью ЛАФЧХ весьма прост и удобен, поэтому находит широкое применение в различных отраслях техники, таких как цифровая обработка сигналов, электротехника и теория управления.

Названия Править

В западной литературе используется название диаграмма Боде или график Боде, по имени выдающегося инженера Хенрика Боде (англ. Hendrik Wade Bode ).

В инженерных кругах название обычно сокращается до ЛАХ.

В пакете прикладных программ для инженерных вычислений MATLAB для построения ЛАФЧХ используется функция bode.

Использование Править

Свойства и особенности Править

Если передаточная функция системы является рациональной, тогда ЛАФЧХ может быть аппроксимирована прямыми линиями. Это удобно при рисовании ЛАФЧХ вручную, а также при составлении ЛАФЧХ простых систем.

С помощью ЛАФЧХ удобно проводить синтез систем систем управления, а также цифровых и аналоговых фильтров: в соответствии с определёнными критериями качества строится желаемая ЛАФЧХ, аппроксимированная с помощью прямых линий, которая затем разбивается на ЛАФЧХ отдельных элементарных звеньев, из которых восстанавливается передаточная функция системы (регулятора) или фильтра.

ЛАЧХ Править

На графике ЛАЧХ абсциссой является частота в логарифмическом масштабе, по оси ординат отложена амплитуда передаточной функции в децибелах.

Представление АЧХ в логарифмическом масштабе упрощает построение характеристик сложных систем, так как позволяет заменить операцию перемножения АЧХ звеньев сложением, что вытекает из свойства логарифма: ~ \lg(a \cdot b) = \lg(a) + \lg(b) .

ФЧХ Править

На графике фазо-частотной характеристики абсциссой является частота в логарифмическом масштабе, по оси ординат отложен фазовый сдвиг выходного сигнала системы относительно входного (обычно в градусах).

Также возможен вариант, когда по оси ординат откладывается фазовый сдвиг в логарифмическом масштабе, в этом случае характеристика будет называться ЛФЧХ.

Случай минимально-фазовых систем Править

Амлитуда и фаза системы редко меняются независимо друг от друга — при изменении амплитуды меняется и фаза и наоборот. Для минимально-фазовых систем ЛФЧХ и ЛАЧХ могут быть однозначно определены друг из друга с помощью преобразования Гильберта.

Построение ЛАФЧХ Править

Основная идея основывается на следующем математическом правиле сложения логарифмов. Если передаточную функцию можно представить в виде дробно-рациональной функции

 f(x) = A \prod (x + c_n)^{a_n} ,

то:

 \log(f(x)) = \log(A) + \sum a_n log(x + c_n)

После разбиения передаточной функции на элементарные звенья можно построить ЛАФЧХ каждого отдельного звена, а результирующую ЛАФЧХ получить простым сложением.

Аппроксимация ЛАЧХ прямыми линиями Править

При построении ЛАЧХ для оси ординат обычно используется масштаб ~20 \cdot \operatorname{lg}(X), то есть значение АЧХ, равное 100 превращается в 40 децибел шкалы ЛАЧХ. Если передаточная функция имеет вид:

 H(s) = A \cdot \prod \frac{(s + x_n)^{a_n}}{(s + y_n)^{b_n}}
где \ s  — комплексная переменная, которую можно связать с частотой, используя следующую формальную замену: ~ s = j \omega\ , \ x_n и \ y_n — константы, а \ H  — передаточная функция. Тогда построить ЛАЧХ можно используя следующие правила:
  • в каждом \ s , где \omega\ = x_n (нуль), наклон линии увеличивается на (20 \cdot a_n) дБ на декаду.
  • в каждом \ s , где \omega\ = y_n (полюс), наклон линии уменьшается на (20 \cdot b_n) дБ на декаду.
  • Начальное значение графика можно найти простой подстановкой значения круговой частоты  \omega\ в передаточную функцию.
  • Начальный наклон графика зависит от числа и порядка нулей и полюсов, которые меньше начального значения частоты. Он может быть найден с помощью первых двух правил.
  • В случае наличия комплексно-сопряжённых нулей или полюсов необходимо использовать звенья второго порядка, ~x^2+ax+b, наклон менятся в точке  \sqrt{b} сразу на (40 \cdot a_n) дБ на декаду.

Корректировка аппроксимированной ЛАЧХ Править

Для корректировки ЛАЧХ, аппроксимированную прямыми линиями надо:

  • в каждом нуле поставить точку на 3 \cdot a_n\ дБ выше линии (6 \cdot a_n\ дБ для двух комплексно-сопряжённых нулей)
  • в каждом полюсе поставить точку на 3 \cdot a_n\ дБ ниже линии (6 \cdot a_n\ дБ для двух комплексно-сопряжённых полюсов)
  • плавно соединить точки, используя прямые линии в качестве асимптот

Аппроксимация ФЧХ Править

Для построения аппроксимированной ФЧХ используют запись передаточной функции в том же виде, что и для ЛАЧХ:

 H(s) = A \prod \frac{(s + x_n)^{a_n}}{(s + y_n)^{b_n}}

Основной принцип построения ФЧХ — начертить отдельные графики для каждого полюса или нуля, затем сложив их. Точная кривая фазо-частотной характеристики задаётся уравнением:

 \varphi = \operatorname{arctg} (\frac{\Im(H(j \omega))}{\Re(H(j \omega))})

Для того, чтобы нарисовать ФЧХ для каждого полюса или нуля, используют следующие правила:

  • если \ A положительно, начать линию (с нулевым наклоном) в 0 градусов,
  • если \ A отрицательно, начать линию (с нулевым наклоном) в 180 градусов,
  • для нуля сделать наклон линии вверх на 45 \cdot a_n (90 \cdot b_n для комплексно сопряжённого) градусов на декаду начиная с  \omega = \frac{x_n}{10} ,
  • для полюса наклонить линию вниз на 45 \cdot b_n (90 \cdot b_n для комплексно сопряжённого) градусов на декаду начиная с  \omega = \frac{y_n}{10} ,
  • обнулить наклон снова когда фаза изменится на  90 \cdot a_n градусов для простого нуля или полюса и на  180 \cdot a_n градусов для комплексно-сопряжённого нуля или полюса,
  • сложить все линии и нарисовать результирующую.

Анализ устойчивости по ЛАФЧХ Править


ЛАФЧХ некоторых элементарных звеньев Править

Ниже представлена таблица, в которую помещены передаточные функции и ЛАФЧХ некоторых типовых элементарных звеньев. Большая часть линейных стационарных систем может быть представлена в виде соединения таких звеньев. В таблице  \ s  — комплексная переменная.

Звено Передаточная функция ЛАФЧХ Примечания
1 пропорциональное  \ K Файл:Gain bode.png  \ K = 100
2 идеальное интегрирующее[1] \frac{1}{s} Файл:Integ bode.png
3 идеальное дифференцирующее[2]  \ s Файл:Diff bode.png
4 апериодическое
(реальное интегрирующее)
\frac{1}{Ts+1} Файл:Aper bode.png \ T = 0,01
5 колебательное \frac{1}{T^2s^2 + 2\;\xi\ T s + 1} Файл:Aper 2.png \ T = 0,01
\xi\ = 0.1
6 неустойчивое
апериодическое
\frac{1}{Ts - 1} Файл:Unstaper bode.png \ T = 0,01

неминимально-фазовое
7 форсирующее  \ Ts + 1 Файл:For bode.png \ T = 0,01
8 форсирующее
второго
порядка
\ T^2s^2 + 2\;\xi\ T s+ 1 Файл:For2 bode.png \ T = 0,01
\xi\ = 0.1
9 чистого
запаздывание
 \ e^{-sT} Файл:Delay bode.png \ T = 0.0001

Примечания Править


См. также Править


Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики