ФЭНДОМ


Кооперативная игра — термин теории игр. Кооперативной называется игра, в которой группы игроков — коалиции — могут объединять свои усилия. Этим она отличается от игр, в которых коалиции неприемлемы и каждый обязан играть за себя. Примером такой игры может являться карточная игра в дурака «двое на двое» или «трое на трое», либо разыгрывание «втёмную» виста в преферансе.

Развлекательные игры редко являются кооперативными, из-за отсутствия механизмов, которые могли бы навязывать координацию действий между членами коалиции. Однако такие механизмы нередки в повседневной жизни.

Теория игр занимается изучением конфликтов, то есть ситуаций, в которых группе людей необходимо выработать какое-либо решение, касающееся их всех. Некооперативная теория игр изучает то, как должны действовать игроки, чтобы придти к тому или иному результату, кооперативная же теория игр изучает вопрос о том, какие возможные исходы являются справедливыми с той или иной точки зрения.

Математическое представление Править

Согласно определению, кооперативной игрой называется пара (N,v), где N - это множество игроков, а v - это функция: 2NR, из множества всех коалиций в множество вещественных чисел (так называемая характеристическая функция). Предполагается, что пустая коалиция зарабатывает ноль, т.е. v(∅) = 0. Характеристическая функция описывает величину выгоды, которую данное подмножество игроков может достичь путем объединения в коалицию. Подразумевается, что игроки примут решение о создании коалиции в зависимости от размеров выплат внутри коалиции.

Свойства характеристической функции Править

Монотонность —- свойство, при котором у больших (в смысле включения) коалиций выплаты больше: если A \sube B \rArr v(A) \le v(B).

Супераддитивность —- свойство, при котором для любых двух непересекающихся коалиций A и B сумма их выгод по-отдельности не больше их выгоды при объединении:

A \cap B= \emptyset \Rightarrow v(A \cup B) \ge v(A) + v(B)

Выпуклость -- характеристическая функция является выпуклой, если

v(A \cup B) + v(A \cap B) \ge v(A) + v(B)

Примеры игр Править

Простые игры —- особый вид кооперативных игр, где все выплаты это 1 или 0, то есть коалиции либо «выигрывают», либо «проигрывают». Простая игра называется правильной, если:

v(A)=1-v(N \setminus A).

Значение этого: коалиция выигрывает тогда и только тогда, когда дополняющая коалиция (оппозиция) проигрывает.

Решение кооперативных игр Править

В соответствии с определением кооперативной игры, множество игроков N в совокупности обладает некоторым количеством определенного блага, которое надлежит разделить между участниками. Принципы этого деления и называются решениями кооперативной игры.

Решение может быть определено как для конкретной игры, так и для класса игр. Естественно, что наибольшей важностью обладают как раз те принципы, которые применимы в широком спектре случаев (т.е. для обширного класса игр).

Решение может быть как однозначным (в этом случае для каждой игры решением является единственное распределение выигрышей), так и многозначным (когда для каждой игры могут быть определены несколько распределений). Примерами однозначных решений служат N-ядро и вектор Шепли, примерами многозначных - C-ядро и K-ядро.


Связь с некооперативными играми Править

Источники Править

Текст статьи на английском Cooperative game



Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики