ФЭНДОМ



Файл:IntelligentAgent-SimpleReflex.png
Файл:IntelligentAgent-Learning.png

Термины «агент» и «интеллектуальный агент» (ИА) имеют два значения, и из-за этого иногда возникает путаница.

В компьютерной науке, интеллектуальный агент — это программа, самостоятельно выполняющая задание, указанное пользователем компьютера, в течение длительных промежутков времени. Интеллектуальные агенты используются для содействия оператору или сбора информации. Одним из примеров заданий, выполняемых агентами, может служить задача постоянного поиска и сбора необходимой информации в Интернете. Компьютерные вирусы, боты, поисковые роботы — все это также можно отнести к интеллектуальным агентам. Хотя такие агенты имеют строгий алгоритм, «интеллектуальность» в этом контексте понимается как способность приспосабливаться и обучаться.

В искусственном интеллекте, под термином интеллектуальный агент понимаются разумные сущности, наблюдающие за окружающей средой и действующие в ней, при этом их поведение рационально в том смысле, что они способны к пониманию и их действия всегда направлены на достижение какой-либо цели. Такой агент может быть как роботом, так и встроенной программной системой. Об интеллектуальности агента можно говорить, если он взаимодействует с окружающей средой примерно так же, как действовал бы человек.

Эти два значения понятия «интеллектуальный агент» достаточно различны, и между ними почти нет связи. Интеллектуальный агент в первом смысле может быть разработан, используя традиционные методы разработки, в нем немногим больше интеллекта, чем в почтовом клиенте или утилите для форматирования жесткого диска. Однако интеллектуальный агент во втором смысле может быть полностью независимым, выполняя свои задачи.

В операционных системах семейства UNIX интеллектуальный агент, действующий в пределах одного компьютера или локальной сети, обычно называется демоном, в семействе Windows — службой (сервисом). Пример: cron в UNIX и «Планировщик задач» в Windows занимаются тем, что запускают указанные пользователем задания в определённые моменты времени.

Интеллектуальные агенты в искусственном интеллекте Править

В искусственном интеллекте существует несколько типов агентов. Например:

  1. Физический Агент — агент, воспринимающий окружающий мир через некоторые сенсоры и действующий с помощью манипуляторов.
  2. Временной агент — агент, который использует изменяющуюся с ходом времени информацию и предлагает некоторые действия или предоставляет данные компьютерной программе или человеку, и получает информацию через программный ввод.

Простая агентная программа может быть математически описана как агентская функция, которая проектирует любой подходящий результат восприятия на действие, которое агент может выполнить, или в коэффициент, элемент обратной связи, функцию или константу, которые могут повлиять на дальнейшие действия.

f:P*->A

Программный агент, напротив, проецирует результат восприятия только на действие.

Всех агентов можно разделить на пять групп, по типу обработки воспринимаемой информации:

  1. агенты с простым поведением
  2. агенты с поведением, основанным на модели
  3. целенаправленные агенты
  4. практичные агенты
  5. обучающиеся агенты

1. Агенты с простым поведением

Агенты с простым поведением действуют только на основе текущих знаний. Их агентская функция основана на схеме условие-действие

IF (условие) THEN действие

Такая функция может быть успешной, только если окружающая среда полностью поддается наблюдению. Некоторые агенты также могут иметь информацию о их текущем состоянии, что позволяет им не обращать внимания на условия, предпосылки которых уже выполнены.

2. Агенты с поведением, основанным на модели

Агенты с поведением, основанным на модели, могут оперировать со средой, лишь частично поддающейся наблюдению. Внутри агента хранится представление о той части, что находится вне границ обзора. Чтобы иметь такое представление, агенту необходимо знать, как выглядит окружающий мир, как он устроен. Эта дополнительная информация дополняет «Картину Мира».

3. Целенаправленные агенты

Целенаправленные агенты схожи с предыдущим типом, однако они, помимо прочего, хранят информацию о тех ситуациях, которые для них желательны. Это дает агенту способ выбрать среди многим путей тот, что приведет к нужной цели.

4. Практичные агенты

Целенаправленные агенты различают только состояния, когда цель достигнута, и когда не достигнута. Практичные агенты, помимо этого, способны различать, насколько желанно для них текущее состояние. Такая оценка может быть получена с помощью «функции полезности», которая проецирует множество состояний на множество мер полезности состояний.

5. Обучающиеся агенты

В некоторой литературе, обучающиеся агенты (ОА) также называются autonomous intelligent agents, что означает их независимость и способность к обучению и приспосабливанию к изменяющимся обстоятельствам. По мнению Николая Касабова[1],система ОА должна проявлять следующие способности:

  • обучаться и развиваться в процессе взаимодействия с окружающей средой
  • приспосабливаться в режиме реального времени
  • быстро обучаться на основе большого объема данных
  • пошагово приспосабливать новые способы решения проблем
  • обладать базой примеров с возможностью ее пополнения
  • иметь параметры для моделирования быстрой и долгой памяти, возраста и т. д.
  • анализировать себя в терминах поведения, ошибки и успеха

Чтобы активно выполнять свои функции, ИА обычно имеют иерархическую структуру, включающую много «субагентов». Интеллектуальные субагенты обрабатывают и выполняют низкоуровневые функции. Интеллектуальные агенты и субагенты составляют полную систему, которая способна выполнять сложные задачи. При этом поведение системы создаёт впечатление разумности.

Существует несколько типов субагентов:

  1. Временные агенты (для принятия оперативных решения)
  2. Пространственные клиенты (для взаимодействия с реальным миром)
  3. Сенсорные агенты (обрабатывают сенсорные сигналы — к примеру агенты, работающие на основе нейросети)
  4. Обрабатывающие агенты (решают проблемы типа распознавания речи)
  5. Принимающие решение агенты
  6. Обучающие агенты (для создания структур и баз данных для остальных ИА)
  7. Мировые агенты (объединяют в себе остальные классы агентов для автономного поведения)

Интеллектуальные агенты в компьютерной науке Править

Достаточно ограниченное число агентов, что могут считаться полуинтеллектуальными (из-за своей простоты, слабой способности к принятию решений, ограниченности взглядов на внешний мир и плохой обучаемости) перечислены в следующем документе: Third Canadian Edition of «Management Information Systems for the Information Age». Согласно нему, существует только 4 типа таких ИА:[2]

  1. Роботы по закупкам
  2. Пользовательские или персональные агенты
  3. Управляющие и наблюдающие агенты
  4. Добывающие информацию агенты

1. Роботы по закупкам[2]

Такие роботы, просматривая сетевые ресурсы (чаще всего интернет), собирают информацию о товарах и услугах. Роботы по закупкам очень эффективно работают с товарами народного потребления, такими как компакт-диски, книги, электротовары и другие товары. Amazon.com является отличным примером такого робота. Веб-сайт предложит вам список товаров, что вам могут быть интересны, основываясь на том, что вы покупали в прошлом.

2. Пользовательские или персональные агенты

Пользовательские агенты — это ИА, которые действуют в ваших интересах, от вашего имени. К этой категории относятся ИА, которые постоянно, или в течении некоторого времени выполняют следующие задания:

  • Проверяют вашу почту, сортируют их по важности (используя заданные вами критерии), и оповещают вас, когда поступает важное письмо, например, письмо о поступлении в университете
  • Играют в компьютерной игре как ваш оппонент или патрулируют области в игре для помощи вам
  • Собирают новости. Существует несколько версий таких роботов, к примеру CNN
  • Ищут информацию по выбранному предмету
  • Самостоятельно заполняют web-формы, сохраняя информацию для последующего использования
  • Просматривают веб-страницы, ища и подсвечивая ключевую информацию
  • «Дискутирует» с вами на различные темы, от ваших страхов до спорта

3. Управляющие и наблюдающие агенты[2]

Управляющие агенты, также известные как «предсказывающие агенты» ведут наблюдение и отправляют отчеты. К примеру, в NASA’s Jet Propulsion Laboratory есть агент, следящий за состоянием инвентаря, планированием, составлением расписания. Такие агенты обычно ведут наблюдение за компьтерными сетями и следят за конфигурацией каждого компьютера, подключенного к сети

4. Добывающие информацию агенты

Такие агенты действуют в хранилище данных, собирая информацию. Хранилище данных объединяет в себе информацию из разных источников. Сбор информации — это процесс поиска данных для последующего использования, например, для увеличения продаж или привлечения покупателей. 'Классификация' — один из наиболее часто используемых приемов для сбора информации, который находит и категоризирует образы в информации. Добывающие информацию агенты также могут обнаруживать ключевые изменения тенденций развития и предупредить вас о наличии новой информации.

См. также Править

Литература Править

  1. N. Kasabov, Introduction: Hybrid intelligent adaptive systems. International Journal of Intelligent Systems, Vol.6, (1998) 453—454.
  2. 2,0 2,1 2,2 Haag, Stephen. «Management Information Systems for the Information Age», 2006. Pages 224—228

Ссылки Править





Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.