ФЭНДОМ


Интеллектуальная информационная система (ИИС) — это один из видов автоматизированных информационных систем, иногда ИИС называют системой, основанных на знаниях. ИИС представляет собой комплекс программных, лингвистических и логико-математических средств для реализации основной задачи: осуществление поддержки деятельности человека и поиска информации в режиме продвинутого диалога на естественном языке.


Классификация ИИС Править

ИИС могут размещаться на каком-либо сайте, где пользователь задает системе вопросы на естественном языке (если это вопросно-ответная система) или, отвечая на вопросы системы, находит необходимую информацию (если это экспертная система). Но, как правило, ЭС в интернете выполняют рекламно-информационные функции (интерактивные баннеры), а серьезные системы (такие, как, например, ЭС диагностики оборудования) используются локально, так как выполняют конкретные специфические задачи.
Интеллектуальные поисковики отличаются от виртуальных собеседников тем, что они достаточно безлики и в ответ на вопрос выдают некоторую выжимку из источников знаний (иногда достаточно большого объема), а собеседники обладают «характером», особой манерой общения (могут использовать сленг, ненормативную лексику), и их ответы должны быть предельно лаконичными (иногда даже просто в форме смайликов, если это соответствует контексту :-)).

Для разработки ИИС раньше использовались логические языки (Пролог, Лисп и т. д.), а сейчас используются различные процедурные языки. Логико-математическое обеспечение разрабатывается как для самих модулей систем, так и для состыковки этих модулей. Однако на сегодняшний день не существует универсальной логико-математической системы, которая могла бы удовлетворить потребности любого разработчика ИИС, поэтому приходится либо комбинировать накопленный опыт, либо разрабатывать логику системы самостоятельно. В области лингвистики тоже существует множество проблем, например, для обеспечения работы системы в режиме диалога с пользователем на естественном языке необходимо заложить в систему алгоритмы формализации естественного языка, а эта задача оказалась куда более сложной, чем предполагалось на заре развития интеллектуальных систем. Еще одна проблема — постоянная изменчивость языка, которая обязательно должна быть отражена в системах искусственного интеллекта.

Обеспечение работы ИИС Править

  • Математическое
  • Лингвистическое
  • Информационное
  • Семантическое
  • Программное
  • Техническое
  • Технологическое
  • Кадровое

Классификация задач, решаемых ИИС Править

  • Интерпретация данных. Это одна из традиционных задач для экспертных систем. Под интерпретацией понимается процесс определения смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных.
  • Диагностика. Под диагностикой понимается процесс соотношения объекта с некоторым классом объектов и/или обнаружение неисправности в некоторой системе. Неисправность — это отклонение от нормы. Такая трактовка позволяет с единых теоретических позиций рассматривать и неисправность оборудования в технических системах, и заболевания живых организмов, и всевозможные природные аномалии. Важной спецификой является здесь необходимость понимания функциональной структуры («анатомии») диагностирующей системы.
  • Мониторинг. Основная задача мониторинга — непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы — «пропуск» тревожной ситуации и инверсная задача «ложного» срабатывания. Сложность этих проблем в размытости симптомов тревожных ситуаций и необходимость учёта временного контекста.
  • Проектирование. Проектирование состоит в подготовке спецификаций на создание «объектов» с заранее определёнными свойствами. Под спецификацией понимается весь набор необходимых документов -- чертёж, пояснительная записка и т.д. Основные проблемы здесь — получение чёткого структурного описания знаний об объекте и проблема «следа». Для организации эффективного проектирования и в ещё большей степени перепроектирования необходимо формировать не только сами проектные решения, но и мотивы их принятия. Таким образом, в задачах проектирования тесно связываются два основных процесса, выполняемых в рамках соответствующей ЭС: процесс вывода решения и процесс объяснения.
  • Прогнозирование. Прогнозирование позволяет предсказывать последствия некоторых событий или явлений на основании анализа имеющихся данных. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций. В прогнозирующей системе обычно используется параметрическая динамическая модель, в которой значения параметров «подгоняются» под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками.
  • Планирование. Под планированием понимается нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких ЭС используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности.
  • Обучение. Под обучением понимается использование компьютера для обучения какой-то дисциплине или предмету. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказывают правильные решения. Они аккумулируют знания о гипотетическом «ученике» и его характерных ошибках, затем в работе они способны диагностировать слабости в познаниях обучаемых и находить соответствующие средства для их ликвидации. Кроме того, они планируют акт общения с учеником в зависимости от успехов ученика с целью передачи знаний.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что, в случае успешного обучения, сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке.

  • Управление. Под управлением понимается функция организованной системы, поддерживающая определенный режим деятельности. Такого рода ЭС осуществляют управление поведением сложных систем в соответствии с заданными спецификациями.
  • Поддержка принятия решений. Поддержка принятия решения — это совокупность процедур, обеспечивающая лицо, принимающее решения, необходимой информацией и рекомендациями, облегчающие процесс принятия решения. Эти ЭС помогают специалистам выбрать и/или сформировать нужную альтернативу среди множества выборов при принятии ответственных решений.

В общем случае все системы, основанные на знаниях, можно подразделить на системы, решающие задачи анализа, и на системы, решающие задачи синтеза. Основное отличие задач анализа от задач синтеза заключается в том, что если в задачах анализа множество решений может быть перечислено и включено в систему, то в задачах синтеза множество решений потенциально не ограничено и строится из решений компонент или под-проблем. Задачами анализа являются: интерпретация данных, диагностика, поддержка принятия решения; к задачам синтеза относятся проектирование, планирование, управление. Комбинированные: обучение, мониторинг, прогнозирование.

См. также Править

Ссылки Править

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики