ФЭНДОМ


Запрос «Zero sum» перенаправляется сюда; см. также другие значения.

Антагонистическая игра (игра с нулевой суммой, англ. zero-sum ) — термин теории игр. Антагонистической игрой называется некооперативная игра, в которой участвуют два игрока, выигрыши которых противоположны.

Формально антагонистическая игра может быть представлена тройкой <X, Y, F>, где X и Y — множества стратегий первого и второго игроков, соответственно; F — функция выигрыша первого игрока, ставящая в соответствие каждой паре стратегий (ситуации) (x,y), x \in X, y \in Y действительное число, соответствующее полезности первого игрока при реализации данной ситуации. Так как интересы игроков противоположны, функция F одновременно представляет и проигрыш второго игрока.

Исторически антагонистические игры являются первым классом математических моделей теории игр, при помощи которых описывались азартные игры. Считается, что благодаря этому предмету исследования теория игр и получила свое название. В настоящее время антагонистические игры рассматриваются как часть более широкого класса некооперативных игр.

Пример Править

X \ Y Орел Решка
Орел -1, 1 1, -1
Решка 1, -1 -1, 1

Простейшим примером антагонистической игры является игра "Орлянка". Первый игрок прячет монету орлом или решкой вверх, а второй пытается угадать, как она спрятана. Если он не угадывает - он платит первому одну денежную единицу, если угадывает - первый платит ему одну денежную единицу.

В данной игре каждый участник имеет две стратегии: "орел" и "решка". Множество ситуаций в игре состоит из четырех элементов. В строках таблицы указаны стратегии первого игрока х, в столбцах - стратегии второго игрока y. Для каждой из ситуаций указаны выигрыши первого и второго игроков.

В аналитическом виде функция выигрыша первого игрока имеет следующую форму:

F_1(x,y)=\left\{\begin{matrix} 1, & x \not = y \\ -1, & x = y \end{matrix}\right. ,

где xX и yY - стратегии первого и второго игроков, соответственно.

Так как выигрыш первого игрока равен проигрышу второго, то F_2(x,y)= -F_1(x,y).

Если результат полностью определяется игроком, совершившим последний ход (если правила хода идентичны для игроков), стратегия может быть найдена с помощью функции Гранди.

См.также Править

Литература Править

  • Петросян Л. А., Зенкевич Н. А., Семина Е. А. Теория игр. — М.: Высшая школа, 1998.
  • Васин А. А., Морозов В. В. Теория игр и модели математической экономики. — М., 2005.



Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на ФЭНДОМЕ

Случайная вики